

University College London DEPARTMENT OF MATHEMATICS

Mid-Sessional Examinations 2009

Mathematics 1201

Monday 12 January 2009 11.30 – 1.30 or 1.15 – 3.15

All questions may be attempted but only marks obtained on the best **four** solutions will count.

The use of an electronic calculator is **not** permitted in this examination

1) (i) Replace the negation of the following formula by an equivalent formula which does not involve \neg , \wedge or \vee ;

$$(\forall x)(\exists y) (P(x) \vee \neg Q(y)) \wedge (\forall y)(\exists x) (P(y) \wedge \neg Q(x))$$
.

(ii) Let $f: A \to B$ be a mapping between sets A, B. Explain what is meant by saying that (a) f is injective; (b) f is invertible. Show that an invertible mapping is injective.

In each case below decide, giving your explanation, whether the given mapping is a) injective b) surjective;

- i) $f: \mathbf{Z} \to \mathbf{Z}$; $f(x) = x^3 + x$;
- ii) $g: \mathbf{R} \to \mathbf{R}$; $g(x) = x^3 x$.
- 2) Let $\epsilon(r,s)$ be the basic $m \times m$ matrix given by $\epsilon(r,s)_{ij} = \delta_{ri}\delta_{sj}$ where ' δ ' denotes the Kronecker delta. Explain with proof how to calculate the product $\epsilon(r,s)\epsilon(u,t)$.

Describe in detail the elementary $m \times m$ matrices

(i)
$$E(r, s; \lambda)$$
 $(r \neq s)$; (ii) $\Delta(r, \lambda)$ $(\lambda \neq 0)$; (iii) $P(r, s)$ $(r \neq s)$

in terms of the basic matrices $\epsilon(r, s)$.

Find the inverse A^{-1} of the matrix A below. Hence express both A^{-1} and A as products of elementary matrices.

$$A = \left(\begin{array}{ccc} 0 & 1 & 1 \\ 1 & 3 & 2 \\ 3 & 2 & 0 \end{array}\right).$$

PLEASE TURN OVER

- Mun. My Marins Cloud. com
- 3) Let V, W be vector spaces over a field \mathbf{F} and let $T:V\to W$ be a mapping; explain what is meant by saying that T is linear. When T is linear, explain what is meant by
- (a) the kernel, Ker(T) and
- (b) the image, Im(T).

State and prove a relationship which holds between dim Ker(T) and dim Im(T).

Let $T_A: \mathbf{Q}^6 \to \mathbf{Q}^4$ be the linear mapping $T_A(\mathbf{x}) = A\mathbf{x}$, where

$$A = \left(\begin{array}{rrrrr} 1 & 3 & 0 & 0 & 2 & 1 \\ 1 & 3 & -1 & 0 & 2 & -1 \\ 1 & 2 & 3 & 3 & 5 & 4 \\ 1 & 0 & 4 & 3 & 5 & 6 \end{array}\right).$$

Find (i) dim $Ker(T_A)$; (ii) a basis for $Ker(T_A)$; (iii) a basis for $Im(T_A)$.

4) Let $T:U\to V$ be a linear map between vector spaces U, V, and let $\mathcal{E}=(e_i)_{1\leq i\leq m}$ be a basis for U and $\Phi=(\varphi_j)_{1\leq j\leq n}$ be a basis for V. Explain what is meant by the matrix $m(T)_{\mathcal{E}}^{\Phi}$ of T taken with respect to \mathcal{E} (on the left) and Φ (on the right) and prove that if $S:V\to W$ is also a linear map and $\Psi=(\psi_k)_{1\leq k\leq p}$ is a basis for W then

$$m(S \circ T)^{\Psi}_{\mathcal{E}} = m(S)^{\Psi}_{\Phi} m(T)^{\Phi}_{\mathcal{E}}.$$

Hence derive a relationship between $m(\mathrm{Id})^{\mathcal{E}}_{\Phi}$ and $m(\mathrm{Id})^{\Phi}_{\mathcal{E}}$ when U=V=W.

Let
$$\mathcal{E} = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \;\; ; \;\; \Phi = \left\{ \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \right\}$$

be bases for \mathbf{Q}^3 and let $T: \mathbf{Q}^3 \to \mathbf{Q}^3$ be a linear mapping. Express $m(T)^{\mathcal{E}}_{\mathcal{E}}$ in terms of $m(T)^{\Phi}_{\Phi}$ and $m(\mathrm{Id})^{\mathcal{E}}_{\Phi}$, and hence find $m(T)^{\mathcal{E}}_{\mathcal{E}}$ when

$$m(T)_{\Phi}^{\Phi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

CONTINUED

5) Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be a subset of a vector space V; explain what is meant by saying that the set $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ is linearly independent.

In each case below, decide with justification whether the given vectors are linearly independent. If they are not, give an explicit dependence relation between them.

(a)
$$\begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}$, $\begin{pmatrix} 3 \\ 0 \\ 3 \\ -1 \\ 2 \end{pmatrix}$;

$$(b) \quad \begin{pmatrix} 1 \\ 0 \\ 1 \\ 0 \\ 1 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 3 \\ -1 \\ 3 \\ 0 \\ 2 \end{pmatrix}.$$

Explain what is meant by a spanning set for a vector space V. Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be a spanning set for V, and suppose that $\mathbf{u} \in V$ can be expressed as a linear combination of the form

$$\mathbf{u} = \sum_{r=1}^{n} \lambda_r \mathbf{v}_r$$

with $\lambda_1 \neq 0$. Show that $\{\mathbf{u}, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ is also a spanning set for V. State and prove the Exchange Lemma.

PLEASE TURN OVER

www.mymainscloud.com

- 6) (i) Let σ be a permutation of the set $\{1, \ldots, n\}$; explain what is meant by saying that (a) σ is a transposition; (b) σ is an adjacent transposition. Show that any transposition can be written as a product of adjacent transpositions.
- (ii) Write $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 & 13 & 14 \\ 14 & 6 & 12 & 11 & 10 & 4 & 1 & 5 & 13 & 8 & 2 & 7 & 9 & 3 \end{pmatrix}$ as a product of disjoint cycles and hence compute $\operatorname{sign}(\sigma)$ and $\operatorname{ord}(\sigma)$.
- (iii) Let $\mathcal{P}_7(\mathbf{R})$ be the vector space of polynomials of degree ≤ 7 over the field \mathbf{R} and let $D: \mathcal{P}_7(\mathbf{R}) \to \mathcal{P}_7(\mathbf{R})$ be the linear map given by differentiation. Write down the least positive integer n for which $D^{2n} = 0$ on $\mathcal{P}_7(\mathbf{R})$. By factorising $D^{2n} \mathbf{I}$ show that the mapping

$$D^4 + I : \mathcal{P}_7(\mathbf{R}) \to \mathcal{P}_7(\mathbf{R})$$

is invertible, and write down

- (i) an expression for its inverse in terms of D, and
- (ii) the unique solution $\alpha \in \mathcal{P}_7(\mathbf{R})$ to the differential equation

$$\frac{d^4\alpha}{dx^4} + \alpha = x^6 - x^7.$$

END OF PAPER